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The huge burden of malaria in developing countries urgently demands the development of
novel approaches to fight this deadly disease. Although engineered symbiotic bacteria
have been shown to render mosquitoes resistant to the parasite, the challenge remains to
effectively introduce such bacteria into mosquito populations. We describe a Serratia
bacterium strain (AS1) isolated from Anopheles ovaries that stably colonizes the mosquito
midgut, female ovaries, and male accessory glands and spreads rapidly throughout
mosquito populations. Serratia AS1 was genetically engineered for secretion of anti-Plasmodium
effector proteins, and the recombinant strains inhibit development of Plasmodium
falciparum in mosquitoes.

M
alaria is endemic inmore than 106 coun-
tries, with 212 million new cases and
429,000 global malaria deaths in 2015,
mostly among young children in sub-
Saharan Africa (1). Evidently, available

tools arenot sufficient formalaria control.Malaria
is caused by Plasmodium parasites that are trans-
mitted through the bite of infected female anoph-
elinemosquitoes. The currentmainstay approaches
for controlling malaria are vector mosquito con-
trol and antimalarial drugs (2). With the in-
creasing resistance of malaria parasites to drugs
(3) and of mosquitoes to insecticides (4, 5), new
strategies to control the disease are urgently
needed.
Interferencewith themosquito’s ability to sup-

port parasite development would hinder trans-
mission. Malaria parasites suffer losses during
their development in themosquito vector,with the
most severe bottleneck of Plasmodium develop-
mentoccurring in the lumenof themosquitomidgut
(6). A promising approach is not to kill mosqui-

toes, but instead to convert them into an ineffec-
tive vector of malaria (7) by targeting the midgut
stages (8).
Mosquitomidguts carry a complexmicrobiome,

as well as developing malaria parasites. Midgut
bacterial populations increase 100- to 1000-fold
after ingestion of a blood meal (9). Recombi-
nant bacteria introduced into mosquito midguts
are expected to be amplified as well, enhancing
output of their products. An alternative strat-
egy for malaria control is to genetically engineer
symbiotic bacteria, rather than the mosquito
itself, to produce anti-Plasmodium effector mol-
ecules (paratransgenesis). An early attempt to
test this strategy for the control of malaria used
laboratory Escherichia coli engineered to ex-
press proteins on the bacterial surface (10). Lab-
oratory E. coli, however, does not survive well
in the mosquito midgut, and the recombinant
proteins remained attached to the bacteria, hin-
dering the proteins from reaching their parasite
targets. Recently, we engineered the natural

symbiotic bacterium Pantoea agglomerans to
secrete anti-Plasmodium effector molecules
that inhibited parasite development (11). These
studies left unresolved the challenge of intro-
ducing and propagating recombinant bacteria
into vector populations in the field. Here we re-
port on a different mosquito symbiont, Serratia,
which rapidly disseminates through mosquito
populations.
While working with ovary-associated bacteria

fromour laboratory colony ofAnopheles stephensi
mosquitoes, we fortuitously identified a pre-
viously unknown bacterial strain, named AS1,
that efficiently colonizes mosquito ovaries (fig.
S1). Phylogenetic analysis of the 16S ribosomal
RNA (rRNA) gene sequence shows that the AS1
strain belongs to the genus Serratia and clus-
ters with two strains of Serratia marcescens
marcescens DSM30121 and Serratia marcescens
sakuensis KRED (fig. S2). The 16S rRNA gene
sequence of Serratia AS1 also shows 99% sim-
ilarity to Serratia strains isolated from guts of
other insects (table S1).
A symbiotic bacterium with minimal fit-

ness cost to mosquitoes is an important factor
for the success of the paratransgenesis strat-
egy. In comparisons with controls, we found
that Serratia AS1 had little or no effect on the
life span of adult A. gambiae and A. stephensi
mosquitoes (fig. S3), nor did it influence blood-
feeding behavior (fig. S4). Moreover, wild-type
and recombinant Serratia strains expressing
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Fig. 1. Serratia AS1 bacteria stably colonize the
midgut and rapidly proliferate after a blood
meal. Serratia AS1 tagged with eGFP (AS1-GFP)
was fed to 3-day-old A. stephensi mosquitoes in a
sugar meal for 24 hours, then mosquitoes were
allowed to feed on a blood meal. (A) Population
dynamics of AS1-GFP. Fluorescent bacteria colony-
forming units (CFUs) were determined by
plating serially diluted homogenates of midguts on
Luria-Bertani (LB) agar plates containing 100 mg/ml
of kanamycin. Data were pooled from three
biological replicates (shown are means ± SEM).
**P < 0.01 (Student’s t test). The maximum
bacteria number is reached when Plasmodium
ookinetes would be invading the midgut if
the blood were infected with the parasite. h, hours;
d, days. (B) AS1-GFP in the midgut of a female at 24 hours after blood ingestion (left). On the right is a control mosquito.
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antimalarial effectors (single or mixed) had no
obvious negative impact on mosquito fecun-
dity and fertility (fig. S5). These results imply
that Serratia AS1 colonization and the anti-
Plasmodium products pose little or no fitness
cost to mosquitoes.
To measure Serratia AS1 colonization and

persistence in mosquitoes, we integrated a fluo-
rescent protein gene coding for enhanced green
fluorescent protein (eGFP) or mCherry into the
chromosome of the bacterium (AS1-GFP andAS1-
mCherry). AS1-GFP bacteria were fed to adult
mosquitoes in a sugar meal, and the ability of
Serratia AS1 to colonize mosquito midguts was
assessed at different times after feeding. AS1-GFP
bacteria efficiently populated the mosquito mid-

gut, even though these mosquitoes had an es-
tablishedmicrobiota. AS1-GFP bacterial numbers
increased by more than 200-fold 24 hours after a
blood meal (Fig. 1).
In addition to the midgut, AS1-GFP bacteria

were found in hemolymph and ovaries (Fig. 2A
and fig. S6). The presence of bacteria in ovaries
raised the possibility of transmission to progeny.
Indeed, we found that the bacteria attached to
laid eggs, primarily on the chorion ridges and
floats (Fig. 2B). These bacteria propagated in
the water and were ingested by the larvae that
hatched from these eggs (fig. S9).
When fed to male mosquitoes, AS1 bacteria

colonized their accessory glands (Fig. 2C). To
test the hypothesis that AS1 can be sexually

transmitted, we allowed Serratia-carrying males
to mate with virgin females and found that
the eGFP-tagged bacteria transferred to the fe-
males and colonized their spermatheca, midgut,
and ovaries (fig. S7). These results indicate that
AS1 is venereally transmitted from males to fe-
males. Although larval gut microbiota are elim-
inated during mosquito metamorphosis (12),
AS1 continued (possibly in the hemolymph; fig.
S8A) to rapidly proliferate in the midguts of
adults that emerged from these larvae (fig. S8B).
To test how well this bacterium spreads

through mosquito populations, we conducted
laboratory cage experiments in which virgin
female andmalemosquitoes, previously fed with
SerratiaAS1-mCherry andAS1-GFP, respectively,
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Fig. 2. Serratia AS1 colonizes the reproductive
organs of A. gambiae. (A) Serratia AS1 coloniza-
tion of female ovaries. AS1-GFP was fed to
2-day-old A. gambiae mosquitoes. Three days
after females ingested blood, ovaries were
dissected and visualized by fluorescent micros-
copy. Females not infected with AS1-GFP (right)
were used as controls. (B) Serratia AS1 attaches
to laid eggs. The egg in the upper image was
laid by a mosquito that had been fed AS1-GFP and
shows bacteria attachment to the chorion
ridges. (C) Serratia AS1 colonization of male
accessory glands. AS1-GFP was fed to newly
emerged male mosquitoes. Three days later,
the male reproductive organs were dissected
and visualized by fluorescent microscopy.
Scale bars, 100 mm.
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Fig. 3. Serratia AS1 bacteria efficiently
spread throughout multiple mosquito genera-
tions. A total of 190 virgin females, 190 virgin
males, 10 virgin females fed with AS1-mCherry,
and 10 virgin males fed with AS1-GFP were
added to a cage. After 3 days, these mosquitoes
were fed blood and allowed to lay eggs. The
resulting larvae were reared to adulthood
following standard protocol. Bacterial load
(CFUs) was determined by plating serial dilu-
tions of tissue homogenates on LB agar plates
containing 100 mg/ml of kanamycin and counting
fluorescent colonies (fig. S9). (A) CFUs per
fourth-instar larva gut. (B) CFUs per male
midgut. (C) CFUs per male accessory gland.
(D) CFUs per female midgut. (E) CFUs per
female ovary. G1, G2, and G3 stand for
first, second, and third generation, respectively.
Values are means ± SEM from 10 to 15
mosquitoes in one experiment. The experiments
were repeated three times with similar results.
*P < 0.05; ns, not significant (Student’s t test).
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were introduced into a cage at a proportion of
5%. All the progeny larvae and newly emerged
adults carried both AS1-GFP and AS1-mCherry
(fig. S9), indicating that Serratia AS1 bacteria
can spread vertically, horizontally, and trans-
stadially through amosquito population andwere
maintained through a complete vector life cycle.
Further cage experiments determined the effi-
ciency of Serratia AS1 transmission from one
generation to the next, starting with an initial in-
troduction of 5%.We found that bothAS1-mCherry
originating from the introduced females andAS1-
GFP originating from the introduced males were
present in all larvae, adult midguts, and repro-
ductive organs (ovary and accessory gland) for
three consecutive generations (Fig. 3, A to E).
These results indicate that Serratia AS1 origi-
nating from females and males can spread effi-
ciently (from 5 to 100%) in one generation and
then persist for subsequentmultiple generations.
We used the Serratia HasA (heme-binding

protein) exporting system (13) (fig. S10A) to test
five potent anti-Plasmodium effector molecules
(11). TheMP2 (midgut peptide 2) dodecapeptide,

identified from a phage display screen, binds
tightly to the mosquito midgut and inhibits
P. falciparum invasion with high efficiency (14).
All genes were cloned in an expression vector in
framewith an epitope (E)–taggedHasAanddriven
by a strong constitutive promoter (fig. S10B). Ex-
pression and secretion of individual fusion pro-
teins by each recombinant Serratia strain were
validated by Western blot analysis of bacteria
culture supernatants. All showed high secretion
levels (Fig. 4A). To obtain the maximum impact
on parasite inhibition and minimize the proba-
bility of the development of parasite resistance,
we also genetically engineered Serratia AS1 to
simultaneously produce multiple antimalarial
effector proteins with different killing mecha-
nisms. The five effector genes were cloned in a
single construct, (MP2)2-scorpine-(EPIP)4-Shiva1-
(SM2)2, under the control of a single promoter
(Fig. 4B and fig. S10C).
Recombinant Serratia were fed to mosquitoes

in sugar meals 48 hours before mosquitoes fed
on a P. falciparum–infected blood meal. All re-
combinant strains strongly inhibit P. falciparum

development (Fig. 4C). Strains expressing scorpine
and multiple effector proteins were the most
effective, reducing oocyst loads by 92 to 93%
(Fig. 4C).
Past evidence suggests that genetic modifi-

cation of mosquito vectors of malaria works ef-
ficiently in the laboratory (15–18). The challenge
that remains is how to drive transgenes into wild
mosquito populations. Progress has recently
been made in the development of a genetic drive
(19–21), but few of the ~30 to 40 known anoph-
eline vector species are presently amenable to
genetic manipulation (22). Moreover, anophe-
line vectors frequently occur as reproductively
isolated populations (cryptic species) (23), thus
preventing gene flow from one population to
another.
Previously, we showed that anti-Plasmodium

effectormolecules secreted by themosquito sym-
biont recombinantPantoea agglomerans efficient-
ly inhibit development of the human and rodent
malaria parasites in different Anopheles spe-
cies (11). This approach is equally effective with
A. gambiae (anAfricanmosquito) andA. stephensi
(an Asianmosquito). The availability ofmultiple
effector proteins with different mechanisms re-
duces the probability of selection of resistant par-
asites. However, effective means to introduce the
engineered bacteria into wild mosquito popula-
tions have been lacking.
In this study, we identified a novel Serratia

strain, AS1, that is transmitted efficiently both
vertically and horizontally, in contrast to other
bacterial symbionts tested (24, 25). Moreover,
AS1 can colonize diverse anopheline species from
different continents and can be genetically ma-
nipulated for protein secretion. The engineered
strains inhibited development of P. falciparum
in mosquitoes. These antimalarial effectors (sin-
gle or mixed) do not have an obvious negative
impact on mosquito longevity (11) or fecundity
and fertility (fig. S5). A close relative of Serratia
AS1, Serratia marcescens, is widespread in nature
(table S1). It is a dominant component of the
microbiome of different wild mosquito species
(26–30) and is commonly found in water, soil,
and plant surfaces (31).
Serratia AS1 fed to adult mosquitoes crosses

the midgut epithelium by an unknown mech-
anism and colonizes ovaries, where it adheres
to eggs. How this bacterium evades the mos-
quito immune system is not known. Rapid spread
of AS1 through wild populations could plausibly
occur by dissemination in mosquito breeding
water. It is important to note that eradication
of malaria can only succeed by combining all
available means, including insecticides, drugs,
genetic modification, and possibly vaccines.
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